Optimizing a Single Vendor-Multi Buyer Bi-Objective Supply Chain Problem with Stochastic Demand and Routing Under Storage Capacity and Transportation Constraints Using NSGA-II Algorithm

Mohammadreza Shahriari

Abstract

One of the most important factors for succession in a supply chain is decreasing their costs. Combining the decision making in inventory control and routing areas in distribution network may decrease the cost of supply chain and increase level of service. In this paper we work on a bi-objective supply chain consisting single vendor-multi buyer in infinite horizon. The vendor produces all products and presents them to the buyers through a heterogeneous fleet of transportation. The first objective of this problem deals with decreasing the cost of inventory and transportation and the second one with increasing customer satisfaction level. To draw the problem close to the real situations some practical constraints like storage capacity and transportation equipment are added to the problem. This model is a non-linear integer problem, so Non-dominated sorting genetic algorithm (NSGA-II) is used for solving the presented model.

Keywords: Single vendor-multi buyer, integrated inventory model, NSGA-II.

I. INTRODUCTION

Integrity and coordination in deferent sections is a basic need in a supply chain management (SCM). Most of the activities in a SCM are dependent together and changes in a section may effects on the performance of the other sections, so combining the sections of a SCM is a customary way for decreasing the cost and increasing the profit of supply chain.
Goyal [1] analyzed a single vendor-single buyer combined inventory model and presented framework has been used by many researchers after it. Pan and Yang [2] expand the Goyal model by considering lead time as a decision variable and minimized the cost of system.

The author is with the Department of Management Science, UAE Branch, Islamic Azad University, Dubai UAE. shahriari@iau.ae

Lu [3] presented a single vendor-multi buyer inventory model and considered that each buyer order different items and minimized vendor cost. Yu-Jen [4] worked on a single vendor-single buyer with discount for backorders and considered lead-time as a decision variable. Bendaya and Hariga [5] presented a single vendor-single buyer for a mixed inventory model. The models that combined purchasing raw materials and productions called integrated procurementproduction (IPP) [6]. Lee [7] considered purchase-product mixed model and vendor-buyer mixed model in the same time and decreased mean of inventory and produce cost.
This paper divided in to five parts. The second part is problem definitions and mathematical model. Solving methodology presented in third part and $4^{\text {th }}$ part deals with a numerical example and the last part in conclusions and further studies.

II. PROBLEM DEFINITIONS

In this paper we works on a single vendor-multi buyer supply chain. In this model $\mathrm{i}^{\text {th }}$ buyer order $\left(\sum_{p=1}^{P}\right.$ Qip, $\left.i=1,2, \ldots, N\right)$ and vendor (producer) produce $n Q_{p}$ units with constant rate $R_{p}\left(R_{p}>D_{p}\right)$ in one production time and send in n times with heterogeneous limited capacity fleet of transportation to the buyers.

A. Assumptions

- Storage capacity is limited.
- Buyers demand is stochastic and independent from other buyers.
- Production rate for all products are constant. $\left(R_{p}>D_{p}\right)$
- Planning horizon is limited.
- Fleets of transportation are heterogeneous and have limited capacity.
- Each route serviced by only one vehicle.
- In each period, each buyer meets only one time with each vehicle.

B. Parameters and decision variables

In an infinite horizon for buyers $(i=1,2, \ldots, N)$, products $(p=1,2, \ldots, P)$ and fleet of transportation $(k=1,2, \ldots, K)$ parameters are:
Q_{p} : Inventory of product p for vendor,
$Q_{i p}$: Value of product p ordered by buyer i,
D_{p} : Demand rate of product p
R_{p} : Production rate of product $p,\left(P_{i} \geq D_{i}\right)$
Demand of product p ordered by buyer i,
$D_{i p}: \quad\left(D_{p}=\sum_{i=1}^{p} D_{i p}\right)$
$X_{i p}: \quad$ Demand in lead-time, $X_{i p} \sim N\left\{D_{i p} L_{i p},\left(\sigma_{i p} \sqrt{L_{i p}}\right)^{2}\right\}$
$U L_{i p}$: Upper bound for lead-time of product p for buyer i,
$A_{i p}$: Ordering cost of product p for buyer i,
$A_{v p}$: Set-up cost of product p,
C_{p}^{v} : Production cost of each unit of product p,
purchasing cost of each unit of product p,
$C_{i p}^{B}: \quad\left(C_{p}^{v}<C_{i p}^{B} \quad, \forall i, p\right)$

$$
\begin{aligned}
C_{i p}^{v}\left(L_{i p}\right): & \text { Violation cost of lead-time for product } p \text { for buyer } i \\
h_{i p}: & \text { Holding cost of product } p \text { for buyer } i, \\
h_{v p}: & \text { Holding cost of product } p \text { for vendor } \\
h_{v p}^{\prime}: & \text { Safety coefficient of product } p \text { for buyer } i, \\
K: & \text { Maximum capacity of transportation vehicles, } \\
q_{k}: & \text { Maximum capacity of vehicle } k, \\
t_{i j}: & \text { Travel time from vertex } i \text { to vertex } j, \\
a_{i}: & \text { Receiving time to vertex } i, \\
g_{i k}: & \text { Service time of vehicle } k \text { to vertex } i, \\
w_{i k}: & \text { Lead-time of vehicle } k \text { in vertex } i, \\
\tau_{k}: & \text { Longest permitted route time for vehicle } k, \\
f_{i k}: & \text { Servicing time of vehicle } k \text { in vertex } i, \\
z_{0 k}: & \text { Leaving time of vehicle } k \text { from purchasing storage, } \\
e_{i}: & \text { Earliest time that buyer } i \text { received goods, }
\end{aligned}
$$

l_{i} : latest time that buyer i received goods,
f : Fix cost for using vehicles in the routes,
F^{v} : Maximum capacity of vendor capacity,
F_{i}^{B} : Maximum capacity of buyer i,
$S_{i p}$: Safety stock of product p for buyer i,
v_{p} : Ratio for volume of product p to basis product,
ct : Fix cost of each transportation time unit,
$T E C_{0}^{V}$: Expected total cost of each time unit for vendor,
$T E C_{0}^{B}$: Expected total cost of each time unit for buyer,
$T E C_{A}^{V}$: Expected fixed set-up cost of each time unit for vendor,
$T E C_{H}^{V}$: Expected holding cost of each time unit for vendor,
$T E C_{H}^{B}$: Expected holding cost of each time unit for buyer,
$T E C_{O}^{B}$: Expected ordering cost of each time unit for buyer,
$T E C_{T}^{B}$: Expected transportation cost of each time unit for buyer,
Number of transportations from vendor to buyer,
$r_{i p}$: Re-order point of product p,
$L_{i p}: \quad$ Lead-time of product p for buyer i,
Binary variable, if vehicle k travel from vertex ${ }^{i}$ to
$x_{i j k}$: vertex j is equal 1 , else is equal zero,
$(i, j \neq 0, i \neq j)$

C. Mathematical model

The inventory pattern of the vendor and buyer i for product p presented in figure 1.

Fig. 1: The inventory pattern of the vendor and buyer ${ }^{i}$ for product p.

And the mathematical model is as follows:
$Z_{1}=\min \left(\sum_{p=1}^{p} \frac{D_{p}}{Q_{p}}\left(\frac{A_{v p}}{n}+\sum_{i=1}^{N}\left(A_{i p}+C_{i p}\left(L_{i p}\right)\right)\right)\right)+$
1)
$\sum_{i=1}^{N} \sum_{p=1}^{P}\left(h_{i p} C_{i p}^{B}\left(\frac{Q_{p}}{2 R_{p}} D_{i p}+k_{i p}^{\prime} \sigma_{i p} \sqrt{L_{i p}}\right)\right)+$
$\sum_{p=1}^{P} \frac{Q_{p}}{2} h_{v p} C_{p}^{V}\left(n\left(1-\frac{D_{p}}{R_{p}}\right)-1+\frac{2 D_{p}}{R_{p}}\right)+\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} x_{i j k} t_{i j} c t_{k}$
$Z_{2}=\min \max _{i}\left\{\sum_{p=1}^{P} \frac{D_{p} \sigma_{i p} \sqrt{L_{i p}} \psi\left(k_{i p}^{\prime}\right)}{D_{i p} Q_{p}}\right\}$
$\sum_{j=1, i \neq j}^{N} x_{i j k}=\sum_{j=1, i \neq j}^{N} x_{j i k} \leq 1, \forall i ; i=\{0,1, \ldots, N\}, \forall k ; k=\{1, \ldots, K\}$
$\sum_{k=1}^{K} \sum_{j=0, j \neq i}^{N} x_{i j k}=1, \forall i ; i=\{1, \ldots, N\}$
$\sum_{k=1}^{K} \sum_{i=0, i \neq j}^{N} x_{i j k}=1, \forall j ; j=\{1, \ldots, N\}$
$\sum_{i=1}^{N} \sum_{p=1}^{P} Q_{i p} \nu_{p} \sum_{j=0}^{N} x_{i j k} \leq q_{k}, \forall k ; k=\{1, \ldots, K\}$
$\sum_{i=0}^{N} \sum_{j=0, j \neq i}^{N} x_{i j k}\left(t_{i j}+g_{i k}+\omega_{i k}\right) \leq \tau_{k}, \forall k ; k=\{0,1, \ldots, K\}$
$Z_{0 k}=\omega_{0 k}=g_{0 k}=0, \forall k ; k=\{1, \ldots, K\}$
$\sum_{k=1}^{K} \sum_{i=0, j \neq i}^{N} x_{i j k}\left(a_{i}+t_{i j}+g_{i k}+\omega_{i k}\right) \leq a_{j}, \forall j ; j=\{i, \ldots, N\}$
$e_{i} \leq\left(a_{i}+\omega_{i k}\right) \leq l_{i}, \forall i ; i=\{1, \ldots, N\}, \forall k ; k=\{i, \ldots, K\}$
$\sum_{p=1}^{P}\left(S_{i p}+Q_{i p}\right) V_{p} \leq F_{i}^{B}, \forall i ; i=\{1, \ldots, N\}$
$\sum_{p=1}^{P} n V_{p}\left(Q_{p}-\frac{Q_{p} D_{p}}{R_{p}}\right) \leq F^{V}$
$1 \leq L_{i p} \leq U L_{i p}$
$Q_{i p}, n \geq 0 ; x_{i j k} \in\{0,1\}, \forall i, j ; i, j=\{1, \ldots, N\}$

Fig. 2: Chromosome structure of presented model.
IV. NUMERICAL EXAMPLE

A numerical example with 8 buyers, 3 products and three vehicles presented in this section. All the parameters of this problem presented in tables 1 to 7 and the table 8 contain the results of NSGA-II algorithm. And the Pareto front of this problem presented in figure 3.

TABLE 1.
PARAMETERS OF PROBLEM

$A_{i p}$	Product		
Buyer	1	2	3
1	26	26	24
2	27	29	22
3	19	30	20

$D_{i p}$	Product		
Buyer	1	2	3
1	4117	3757	4100
2	4736	3993	4270
3	1519	2802	4475

Product $i p$			
Buyer	1	2	3
1	25	20	27
2	28	39	40

Sigma	Buyer		
product	1	2	3
1	20	18	10
2	16	20	11
3	11	17	19

Table 2.

PARAMETERS OF PROBLEM

$h_{\text {ip }}$	Product			$W_{i k}$	Product			$g_{i k}$	Product		
Buyer	1	2	3	Buyer	1	2	3	Buyer	1	2	3
1	0.1567	0.3453	0.1691	1	4	3	2	1	2	4	4
2	0.3060	0.3384	0.3533	2	4	2	4	2	4	10	8
3	0.1551	0.2933	0.1584	3	3	5	5	3	1	2	5
4	0.2105	0.2136	0.1678	4	4	3	1	4	6	8	5
5	0.2877	0.3435	0.1512	5	1	3	1	5	5	7	7
6	0.3341	0.2598	0.1683	6	2	5	5	6	10	9	10
7	0.1243	0.2052	0.2307	7	3	2	4	7	9	4	4
8	0.3788	0.3817	0.1933	8	2	3	2	8	5	8	9
9	0.3327	0.3628	0.3770	9	4	5	3	9	9	9	8
10	0.2460	0.2650	0.2291	10	5	1	1	10	2	4	10
11	0.2308	0.2867	0.1554	11	2	5	2	11	4	6	1
12	0.2340	0.2761	0.3715	12	4	1	2	12	10	10	4
13	0.1919	0.1623	0.3939	13	1	4	2	13	10	6	7
14	0.2526	0.1904	0.2317	14	5	3	1	14	8	4	3
15	0.2532	0.2413	0.1333	15	1	4	2	15	7	7	3

Table 3.

Parameters of problem

$S_{i p}$	Product			$U L_{i p}$	Product			$C_{i p}^{V}\left(L_{i p}\right)$	Product		
Buyer	1	2	3	Buyer	1	2	3	Buyer	1	2	3
1	324	220	309	1	3	5	4	1	16	20	16
2	207	476	249	2	3	3	5	2	11	15	10
3	400	493	475	3	3	3	3	3	19	15	12
4	302	214	432	4	4	4	5	4	16	13	13
5	359	421	440	5	5	3	4	5	13	19	19
6	223	459	249	6	5	4	4	6	15	14	10
7	155	339	337	7	3	4	5	7	14	11	10
8	290	454	449	8	4	5	4	8	10	18	11
9	245	478	474	9	4	5	3	9	12	14	17
10	416	320	368	10	4	3	3	10	11	12	18
11	412	392	182	11	4	5	5	11	12	14	17
12	368	331	362	12	4	3	3	12	12	11	14
13	153	110	128	13	3	4	3	13	14	11	16
14	108	279	263	14	4	4	4	14	10	20	13
15	324	359	367	15	3	5	5	15	19	20	18

Table 4.

PARAMETERS OF PROBLEM

$\begin{gathered} t_{i j} \\ \text { Buyer } \end{gathered}$	Buyer															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Depo
1	0	11	26	11	26	11	29	14	10	11	21	17	14	26	20	19
2	11	0	24	24	14	19	6	6	18	25	29	8	19	17	5	13
3	26	24	0	18	9	20	11	22	22	24	16	7	10	28	8	26
4	11	24	18	0	7	30	5	25	26	27	7	15	11	25	16	28
5	26	14	9	7	0	20	19	8	27	21	14	18	15	6	11	8
6	11	19	20	30	29	0	17	17	13	28	14	7	25	15	11	15
7	29	6	11	5	19	17	0	14	26	5	6	9	21	24	21	16
8	14	6	22	25	8	17	14	0	25	7	29	25	17	16	16	12
9	10	18	22	26	27	13	26	25	0	29	27	19	21	20	10	12
10	11	25	24	27	21	28	5	7	29	0	16	9	28	30	16	7
11	21	29	16	7	14	14	6	29	27	16	0	18	7	11	25	5
12	17	8	7	15	18	7	9	25	19	9	18	0	22	15	14	30
13	14	19	10	11	15	25	21	17	21	28	7	22	0	25	23	28
14	26	17	28	25	6	15	24	16	20	30	11	15	25	0	9	11
15	20	5	8	16	11	11	21	16	10	16	25	14	23	9	0	26
Depo	19	13	26	28	8	15	16	12	12	7	5	30	28	11	26	0

Table 5.

PARAMETERS OF PROBLEM

	Buyer														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
e_{i}	19	13	15	14	6	8	5	11	12	8	10	13	9	4	7
l_{i}	190	133	150	140	60	80	52	111	120	82	103	135	90	46	70
$F_{i}{ }^{B}$	96687	90548	74227	87838	70852	98590	99399	93208	69444	72737	62334	89221	94142	95686	77914

Table 6.

PARAMETERS OF PROBLEM

	Product		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
\boldsymbol{D}_{p}	41842	43883	45095
\boldsymbol{R}_{p}	42277	44223	45314
$A_{v p}$	2000	1500	2500
C_{p}^{V}	15	20	10
$h_{v p}$	0.2	0.15	0.25
V_{p}		1	2

TABLE 7.

Fig. 3: Pareto front of NSGA-II.

TABLE 8.

Results of NSGA-II ALGORITHM.

	Time	Diversity	Spacing	Nos	MID
NSGA- II	85.23	$1.6613 \mathrm{e}+05$	$1.0015 \mathrm{e}+03$	100	$\mathbf{2 . 1 1 9 7} \mathbf{e}+\mathbf{0 5}$

V. CONCLUSION AND FURTHER STUDIES

In this paper we work on a single vendor-multi buyer biobjectives inventory models. The first objective of this mode was minimized the cost of SCM ant the second one was maximizing the service level. Because this model is a nonlinear integer programming and belongs to Np. Hard problems we used NSGA-II algorithm for solving the presented model.
For further studies other multi-objective optimization algorithm like MOPSO can be used. Also a multi-vendor-multi-buyer model can be considered.

References

[1] Goyal, S. K. (1976). An integrated inventory model for a single supplier-single customer problem. International Journal of Production Research, 15(1), 107-111.
[2] Pan, C. H. J., \& Yang, J. S. (2002). A study of an integrated inventory with controllable lead time. International Journal of Production Research, 40(5), 1263-1273.
[3] Lu L. A one-vendor multi-buyer integrated inventory model. Eur J Operat Res 1995;81(2):312-23.
[4] Yu-Jen Lin,(2009). " An integrated vendor-buyer inventory model with backorder price discount and effective investment to reduce ordering cost ". Computers \& Industrial Engineering 56 (2009) 1597-1606
[5] J.K. Jha, Kripa Shanke.(2014)". An integrated inventory problem with transportation in a divergent supply chain under service level constraint". Journal of Manufacturing Systems
[6] Goyal SK. A joint economic-lot-size model for purchaser and vendor: a comment. Decision Science 1988;19:236-41.
[7] Lee, W. (2005). A joint economic lot size model for raw material ordering, manufacturing setup, and finished goods delivery. Omega-International Journal of Management Science, 33(2), 163-174.
[8] Srinivas N, Deb K. Multi objective optimization using non-dominated sortingin genetic algorithms. Evol Comput 1994;2:221-48.
[9] Deb K., Agrawal S., Pratap A., Meyarivan T., "A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II", In: proceedings of the parallel problem solving from nature VI (PPSNVI)conference, 849-858, 2000.

